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1. INTRODUCTION

The dynamics of translating media, such as high-speed magnetic tapes, band saws, and
transport cables, concern the motions of constituent particles instantaneously located
within a speci"ed spatial domain [1]. While stationary media with constant length are
composed of the same particles at all times, the constituent particles of translating media
and stationary media with moving boundaries change with time. Through direct
di!erentiation, Miranker [2] "rst calculated the rate of change of total mechanical energy
of a string translating between two "xed supports. He found that the energy of the string
is not conserved and there is a periodic transfer of energy between portions of the
string inside and outside the boundaries. However, an error in sign led to an extra
integral term in the resulting expression for the rate of change of energy. Through the
use of the Reynolds transport theorem, Wickert and Mote [3] presented an extended
energy analysis for the translating string and tensioned beam models. It was shown that
the rates of change of total mechanical energies of translating media equal the net rates
of work done by their internal forces or moments at the boundaries. More recently,
Renshaw et al. [4] examined the distinction between the Lagrangian and Eulerian
functionals de"ned over a set of material particles and a spatial domain respectively.
With a Lagrangian functional and its rate of change de"ned at time t"0, the rates
of change of energies in reference [3] correspond to those of the Lagrangian energy
functionals in reference [4]. Direct di!erentiation of energy in reference [2] would have
resulted in the rate of change of the Eulerian energy functional for the translating string
in reference [4].

We distinguish here the rates of change of energies of translating media from control
volume and system viewpoints. Translating strings and tensioned beams with constant and
variable lengths are considered. We also address the related problems of stationary strings
and tensioned beams with one and two boundaries moving at arbitrarily prescribed
speeds. Correspondences between translating media with variable length and stationary
media with a moving boundary, and between translating media with constant length and
stationary media with both boundaries moving at the same speed, are established. E!ects of
boundary conditions on the energy and stability characteristics of these systems are
demonstrated.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Translating media with constant length at time t: (a) beam with "xed ends, (b) beam with pinned ends,
(c) string. In each case the control volume and system at time t coincide and are enclosed in a box. While the slopes
are continuous at the two boundaries in (a) and (b), they can be discontinuous in (c).
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2. TRANSLATING MEDIA WITH CONSTANT LENGTH

The linear equation describing the transverse vibration of a beam in Figure 1(a,b),
translating with constant velocity v between two supports of distance, l, is
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where lettered subscripts denote partial di!erentiation, y (x, t) is the transverse displacement
of the beam particle instantaneously located at spatial position x (0(x(l ) at time t, P is
the tension in the beam, � is the mass per unit length of the beam, and EI is its #exure
rigidity. The boundary conditions of the beam with "xed ends, as shown in Figure 1(a), are

y"y
�
"0 at x"0 and x"l, (2)

and those of the beam with pinned ends, as shown in Figure 1(b), are

y"y
��

"0 at x"0 and x"l . (3)

The linear equation describing the transverse vibration of the translating string in Figure
1(c) is given by equation (1) with EI"0 and associated boundary conditions

y"0 at x"0 and x"l. (4)

In each case the control volume at time t is de"ned as the spatial domain 0)x)l, and
the system concerned consists of material particles of "xed identity, occupying the spatial
domain [0, l] at time t (see Figure 1). Since the control volume and system contain the same
particles, the total mechanical energies in the two approaches are equal at time t:
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whereE
�
and E

�
(t) are the energies associated with the rigid-body translation and transverse

vibration of the media, respectively, � (x, t) is the total energy density,
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is the energy density associated with the rigid-body translation, and
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is the energy density associated with the transverse vibration of translating beams. The
energy density associated with the transverse vibration of the translating string is given by
equation (7) with EI"0. Note that E

��
corresponds to the Eulerian energy functional in

reference [4], and while the notion of E
����

is similar to that of the Lagrangian energy
functional, the Lagrangian energy functional in reference [4] is de"ned at t"0.

Di!erentiating E
��

in equation (5) and using equation (6) yields
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Substituting equation (7) into equation (8), followed by the use of the governing equation (1),
integration by parts, and application of the boundary conditions in equation (2), yields [4]
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for the translating beam with "xed ends. Similarly,
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for the translating beam with pinned ends, and EQ
��

for the translating string is given by
equation (10) with EI"0 [4].

At time t#�t, while the control volume remains unchanged in each case, the system of
material particles has translated a distance v�t, as shown in Figure 2. The total mechanical
energy of the system of material particles, occupying the spatial domain [v�t, l#v�t], is
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as �tP0, where use has been made of equations (5) and (11), results in the Reynolds
transport theorem for a translating medium with constant length [3]:
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Substituting equations (6), (7), and (9) into equation (13) and using equation (2) yields [3]

EQ
����

(t)"EIy�
��
(x, t) ��

�
(14)



Figure 2. Control volumes and systems of translating media with constant length at time t#�t: (a)} (c) as in

Figure 1.
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for the translating beam with "xed ends. Similarly,
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for the translating beam with pinned ends, and EQ
����

(t) for the translating string is given by
equation (15) with EI"0 [3]. Equations (14) and (15) state that the rate of change of total
mechanical energy of the system of material particles equals the net rate of work done by the
nonconservative forces or moments on it at time t [3].

3. TRANSLATING MEDIA WITH VARIABLE LENGTH

The linear equation describing the transverse vibration of a translating tensioned beam in
Figure 3(a,b) with linearly varying length l(t)"l

�
#vt, where l

�
is the initial length and v is

the constant velocity, is given by equation (1) where 0(x(l (t). A positive and negative
v indicates extension and retraction of the beam respectively. The boundary conditions of
the beam with "xed ends, as shown in Figure 3(a), are

y"y
�
"0 at x"0 and x"l (t), (16)

and those of the beam with pinned ends, as shown in Figure 3(b), are

y"y
��

"0 at x"0 and x"l(t). (17)

The linear equation describing the transverse vibration of the translating string in Figure
3(c) is given by equation (1) with EI"0 and associated boundary conditions

y"0 at x"0 and x"l (t). (18)



Figure 3. Translating media with variable length at time t: (a) beam with "xed ends, (b) beam with pinned ends,
(c) string. In each case the control volume and system at time t coincide and are enclosed in a box.While the slope is
continuous at the boundary x"0 in (a) and (b), it can be discontinuous in (c).
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In each case the control volume at time t is de"ned as the spatial domain 0)x)l(t),
formed instantaneously by the translating medium between the two boundaries, and the
system concerned consists of material particles of "xed identity, occupying the spatial
domain [0, l (t)] at time t (see Figure 3). The total mechanical energies in the two approaches
at time t are
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where �
�
and �

�
are given in section 2. While E
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is constant in equation (5), it depends on time

in equation (19).
Di!erentiating E
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in equation (19) using Leibnitz's rule and equation (6) yields
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Di!erentiating the boundary conditions at x"l (t) in equation (16) yields
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Substituting equation (7) into equation (22), followed by the use of equation (1), integration
by parts, and application of equations (16) and (23), yields
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Figure 4. Control volumes and systems of translating media with variable length at time t#�t:

(a)}(c) as in Figure 3.
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for the translating beam with "xed ends. Similarly,
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for the translating beam with pinned ends, and EQ
�
for the translating string is given by

equation (25) with EI"0. Note that EQ
�
in equations (24) and (25) does not depend explicitly

on the boundary conditions at x"l(t).
While EQ

��
describes the instantaneous growth and decay of total mechanical energy of

a translating medium with variable length, EQ
�
can characterize its dynamic stability.

Because the translating medium under consideration gains and loses mass during extension
(v'0) and retraction (v(0), respectively, E

�
increases and decreases accordingly, as

observed from equation (21). On the other hand, the energy of vibration of the beam with
a "xed end at x"0 decreases and increases monotonically during extension and retraction,
respectively, as observed from equation (24). When �v �(�P/�, the wave speed, the same
behavior is predicted for the translating string. The energy of vibration of the string about
its trivial equilibrium increases and decreases monotonically during extension and
retraction, respectively, when �v �'�P/�, and remains unchanged when �v �"�P/�. Due
to sign-inde"niteness of the second term on its right-hand side, general stability
characteristics of the beam with a pinned end at x"0 cannot be readily inferred from
equation (25).

At time t#�t, the control volume becomes the spatial domain [0, l (t)#v�t] in each
case, and the system of material particles has translated a distance v�t, as shown in Figure 4.
The total mechanical energy of the system of material particles, occupying the spatial
domain [v�t, l (t)#v�t], is

E
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(t#�t)!v�t� (0, t#�t). (26)

Using equations (19) and (26) yields, as �tP0, the Reynolds transport theorem for
a translating medium with variable length [5]:
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Substituting equations (6), (7), (20), (21), and (24) into equation (27) and using equations (16)
and (23) yields
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for the translating beam with "xed ends. Similarly,
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for the translating beam with pinned ends, and EQ
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(t) for the translating string is given by
equation (29) with EI"0. The right-hand side of equation (28) represents the rate of work
done by the bending moment at the left of the system at time t; the rate of work done by the
shear force at the left end vanishes [5]. The rates of work done by the bending moment and
shear force at the right end of the system also vanish, because its absolute angular and
transverse velocities are
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where D/Dt"�/�t#v�/�x is the material time derivative. Similarly, the right-hand side of
equation (29) represents the net rate of work done by the transverse component of the
tension and the shear force at the left end of the system at time t, with its absolute transverse
velocity given by
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4. STATIONARY MEDIA WITH A MOVING BOUNDARY

The linear equation describing the transverse vibration of a stationary tensioned beam in
Figure 5(a,b), with the left end at x"l(t) moving at an arbitrarily prescribed speed
v(t)"lQ (t), is
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where y (x, t) is the transverse displacement of the beam particle at position x (0(x(l(t))
at time t, and other variables are the same as those in section 2. A positive and negative v(t)
indicates that the left boundary moves instantaneously in the positive and negative
direction of the x-axis respectively. The boundary conditions are given by equation (16) for
"xed ends, and equation (17) for pinned ends. The linear equation describing the transverse
vibration of the stationary string in Figure 5(c) is given by equation (32) with EI"0 and
associated boundary conditions given by equation (18). When v is constant, equations (32)
and (16)}(18) describe the motions of translatingmedia in Figure 3 relative to the coordinate
systems that move with the media, with origins located at their right boundaries and
positive x-axes opposite to those of the "xed coordinate systems.

In each case the control volume at time t is de"ned as the spatial domain 0)x)l (t), and
the system concerned consists of material particles of "xed identity, occupying the spatial
domain [0, l (t)] at time t (see Figure 5). The energies in the two approaches at time t are
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Figure 5. Stationary media with a moving boundary at time t: (a) beam with "xed ends, (b) beam with pinned
ends, (c) string. In each case the control volume and system at time t coincide and are enclosed in a box. While the
slope is continuous at the boundary x"l(t) in (a) and (b), it can be discontinuous in (c).
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where
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for the tensioned beams. The energy density for the string is given by equation (34) with
EI"0. Di!erentiating E

��
in equation (33) using Leibnitz's rule yields
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Substituting equation (34) into equation (35), followed by the use of equation (32),
integration by parts, and application of equations (16) and (23), yields
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for the tensioned beam with "xed ends. Similarly,
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for the tensioned beamwith pinned ends, and EQ
��
for the string is given by equation (37) with

EI"0. Note that EQ
��
in equations (36) and (37) does not depend explicitly on the boundary

conditions at x"0.
The energy of the beamwith a "xed end at x"l (t) decreases and increases monotonically

when v (t)'0 and v(t)(0, respectively, as observed from equation (36). The same behavior
is predicted for the string when �v (t) �(�P/�, the wave speed. The energy of the string
increases and decreases monotonically when �v(t)�'�P/�, and remains unchanged when
�v �"�P/�. Because y(l(t), t) in equations (36) and (37) corresponds to y(0, t) in equations
(24) and (25), equations (36) and (37) are in full agreement with equations (24) and (25),



Figure 6. Control volumes and systems of stationary media with a moving boundary at time t#�t: (a)} (c) as in
Figure 5.
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respectively, when v is constant. The dynamic behavior of translating media with variable
length is analogous to that of stationary media with a moving boundary [5].

At time t#�t, while the system of material particles remains unchanged in each case, the
control volume becomes the spatial domain [0, l (t)#v (t)�t], as shown in Figure 6. The
energy of the system of material particles at time t#�t can be related to that of constituent
particles within the control volume:
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Using equations (33) and (38) yields the Reynolds transport theorem for a stationary
medium with a moving boundary:

EQ
����

(t)"EQ
��
(t)!v (t)�

�
(l(t), t). (39)

Substituting equations (34) and (36) into equation (39) and using equations (16) and (23)
yields
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for the tensioned beam with pinned ends, and EQ
����

(t) for the string is given by equation (41)
with EI"0. Since the system is not moving axially, the angular velocity at its left end at
time t is y
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(l(t), t). Hence the right-hand side of equation (40) represents

the rate of work done by the bending moment at the left end of the system at time t.
Similarly, the right-hand side of equation (41) represents the net rate of work done by the
transverse component of the tension and the shear force at the left end of the system at time
t, with its transverse velocity given by y

�
(l (t), t)"!vy

�
(l(t), t).



Figure 7. Stationary media with two moving boundaries at time t: (a) beam with "xed ends, (b) beam with
pinned ends, (c) string. In each case the control volume and system at time t coincide and are enclosed in a box.
While the slopes are continuous at the two boundaries in (a) and (b), it can be discontinuous in (c).
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5. STATIONARY MEDIA WITH TWO MOVING BOUNDARIES

The linear equation describing the transverse vibration of a stationary tensioned beam in
Figure 7(a,b), with both ends at x"l

�
(t) and x"l

�
(t) moving at arbitrarily prescribed

speeds, v
�
(t)"lQ
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(t) and v
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(t) respectively, is given by equation (32) where
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boundary moves instantaneously in the positive and negative direction of the x-axis
respectively. The boundary conditions are
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for "xed ends, and
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�
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�
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for pinned ends. The linear equation describing the transverse vibration of the stationary
string in Figure 7(c) is given by equation (32) with EI"0 and associated boundary
conditions

y"0 at x"l
�
(t) and l

�
(t). (44)

When v
�
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�
"v, where v is constant, equations (32) and (42)}(44) describe the motions of

translating media in Figure 1, relative to the coordinate systems that move with the media,
with origins located at their right boundaries and positive x-axes opposite to those of the
"xed coordinate systems.

In each case the control volume at time t is de"ned as the spatial domain l
�
(t))x)l

�
(t),

and the system concerned consists of material particles of "xed identity, occupying the
spatial domain [l

�
(t), l
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(t)] at time t (see Figure 7). The energies in the two approaches at

time t are
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where �
�
is given in section 4. Di!erentiating E
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Substituting equation (34) into equation (46) and using equation (42) yields
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for the tensioned beam with "xed ends. Similarly,
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for the tensioned beam with pinned ends, and EQ
��
(t) for the string is given by equation (48)

with EI"0.
The following stability characteristics of the tensioned beam with "xed ends are inferred

from equation (47): when v
�
(t)(0 and v

�
(t)'0, the energy decreases, and when v
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and v
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(t)(0, the energy increases. The stability characteristics of the string are the same as
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equations (47) and (48) correspond to y(l, t) and y(0, t) in equations (9) and (10), respectively,
equations (47) and (48) are in full agreement with equations (9) and (10) accordingly, when
v
�
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�
(t)"v, where v is constant. The dynamic behavior of translating media with

constant length is analogous to that of stationary media with both boundaries moving at
the same speed.

At time t#�t, while the system of material particles remains unchanged in each case, the
control volume becomes the spatial domain [l

�
(t)#v

�
(t)�t, l

�
(t)#v

�
(t)�t], as shown in

Figure 8. The energy of the system of material particles at time t#�t can be related to that
of constituent particles within the control volume:
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The Reynolds transport theorem for a stationary medium with two moving boundaries is
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Substituting equations (34) and (47) into equation (50) and using equation (42) yields
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for the tensioned beam with "xed ends. Similarly,
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Figure 8. Control volumes and systems of stationary media with two moving boundaries at time t#�t: (a)}(c)
as in Figure 7.
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for the tensioned beam with pinned ends, and EQ
����

(t) for the string is given by equation (52)
withEI"0. The right-hand side of equation (51) represents the net rate of work done by the
bending moments at the two ends of the system at time t, and that of equation (52) the net
rate of work done by the transverse components of the tensions and the shear forces at the
two ends of the system.

6. CONCLUDING REMARKS

While the equations of motion of translating media are derived in the Eulerian frame of
reference and those of stationary media with moving boundaries the Lagrangian frame of
reference, their rates of change of energies are distinguished from control volume and
system viewpoints. The rates of change of energies from the control volume viewpoint can
characterize the dynamic stability of translating media and stationary media with moving
boundaries, and the rates of change of total mechanical energies from the system viewpoint
establish an instantaneous work and energy relation. While the energies are not conserved
due to relative motions between continuous media and their boundaries, conserved
functionals from the control volume viewpoint can be constructed following reference [6]
and used as Lyapunov functionals. Conserved functionals from the system viewpoint
cannot be used as Lyapunov functionals in analyzing the stability of constituent particles
within the control volume, in agreement with reference [4]. The boundary conditions at
non-dissipative boundaries with no relative motions to the media do not directly a!ect their
stability characteristics.
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